|
In solid state physics, a particle's effective mass (often denoted ) is the mass that it seems to have when responding to forces, or the mass that it seems to have when ''en masse'' with other identical particles in a thermal distribution. One of the results from the band theory of solids is that the movement of particles in a periodic potential, over long distances larger than the lattice spacing, can be very different from their motion in a vacuum. The effective mass is a quantity that is used to simplify band structures by constructing an analogy to the behavior of a free particle with that mass. For some purposes and some materials, the effective mass can be considered to be a simple constant of a material. In general, however, the value of effective mass depends on the purpose for which it is used, and can vary depending on a number of factors. For electrons or electron holes in a solid, the effective mass is usually stated in units of the true mass of the electron, ''me'' (9.11×10−31 kg). In these units it is usually in the range 0.01 to 10, but can also be lower or higher—for example, reaching 1,000 in exotic heavy fermion materials, or anywhere from zero to infinity (depending on definition) in graphene. As it simplifies the more general band theory, the electronic effective mass can be seen as an important basic parameter that influences measurable properties of a solid, including everything from the efficiency of a solar cell to the speed of an integrated circuit. ==Simple case: parabolic, isotropic dispersion relation== At the highest energies of the valence band in many semiconductors (Ge, Si, GaAs, ...), and the lowest energies of the conduction band in some semiconductors (GaAs, ...), the band structure can be locally approximated as : where is the energy of an electron at wavevector in that band, is a constant giving the edge of energy of that band, and is a constant (the effective mass). It can be shown that the electrons placed in these bands behave as free electrons except with a different mass, as long as their energy stays within the range of validity of the approximation above. As a result, the electron mass in models such as the Drude model must be replaced with the effective mass. One remarkable property is that the effective mass can become ''negative'', when the band curves downwards away from a maximum. As a result of the negative mass, the electrons respond to electric and magnetic forces by gaining velocity in the opposite direction compared to normal; even though these electrons have negative charge, they move in trajectories as if they had positive charge (and positive mass). This explains the existence of valence-band holes, the positive-charge, positive-mass quasiparticles that can be found in semiconductors.〔Kittel, ''Introduction to Solid State Physics'' 8th edition, page 194-196〕 In any case, if the band structure has the simple parabolic form described above, then the value of effective mass is unambiguous. Unfortunately, this parabolic form is not valid for describing most materials. In such complex materials there is no single definition of "effective mass" but instead multiple definitions, each suited to a particular purpose. The rest of the article describes these effective masses in detail. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Effective mass (solid-state physics)」の詳細全文を読む スポンサード リンク
|